Computation of Heteroclinic Arcs with Application to the Volume Preserving Hénon Family

نویسندگان

  • Jason D. Mireles-James
  • Héctor E. Lomelí
چکیده

Let f : R3 → R3 be a diffeomorphism with p0, p1 ∈ R3 distinct hyperbolic fixed points. Assume that W (p0) and W (p1) are two dimensional manifolds which intersect transversally at a point q. Then the intersection is locally a one-dimensional smooth arc γ̃ through q, and points on γ̃ are orbits heteroclinic from p0 to p1. We describe and implement a numerical scheme for computing the jets of γ̃ to arbitrary order. We begin by computing high order polynomial approximations of some functions Pu, Ps : R2 → R3, and domain disks Du, Ds ⊂ R2, such that W u loc(p0) = Pu(Du) and W s loc(p1) = Ps(Ds) with W u loc(p0) ∩W s loc(p1) 6= ∅. Then the intersection arc γ̃ solves a functional equation involving Ps and Pu. We develop an iterative numerical scheme for solving the functional equation, resulting in a high order Taylor expansion of the arc γ̃. We present numerical example computations for the volume preserving Hénon family, and compute some global invariant branched manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Volume Preserving Maps: an Extension of a Result of Moser

A natural generalization of the Hénon map of the plane is a quadratic diffeomorphism that has a quadratic inverse. We study the case when these maps are volume preserving, which generalizes the the family of symplectic quadratic maps studied by Moser. In this paper we obtain a characterization of tliese maps for dimension four and less. In addition, we use Moser's result to construct a subfamil...

متن کامل

Beyond All Orders: Singular Perturbations in a Mapping

We consider a family of q-dimensional (q > 1), volume-preserving maps depending on a small parameter ~. As e ---> 0 + these maps asymptote to flows which attain a heteroclinic connection. We show that for small ~ the heteroclinic connection breaks up and that the splitting between its components scales with e like ~ r exp [ / 3 / e ] . We estimate /3 using the singularities of the B ---> 0 ÷ he...

متن کامل

Se p 20 02 Entry and exit sets in the dynamics of area preserving Hénon map Emilia

In this paper we study dynamical properties of the area preserving Hénon map, as a discrete version of open Hamiltonian systems, that can exhibit chaotic scattering. Exploiting its geometric properties we locate the exit and entry sets, i.e. regions through which any forward, respectively backward, unbounded orbit escapes to infinity. In order to get the boundaries of these sets we prove that t...

متن کامل

Separatrix Splitting in 3D Volume-Preserving Maps

We construct a family of integrable volume-preserving maps in R with a bidimensional heteroclinic connection of spherical shape between two fixed points of saddle-focus type. In other contexts, such structures are called Hill’s spherical vortices or spheromaks. We study the splitting of the separatrix under volume-preserving perturbations using a discrete version of the Melnikov method. Firstly...

متن کامل

Validated Computation of Heteroclinic Sets

In this work we develop a method for computing mathematically rigorous enclosures of some one dimensional manifolds of heteroclinic orbits for nonlinear maps. Our method exploits a rigorous curve following argument build on high order Taylor approximation of the local stable/unstable manifolds. The curve following argument is a uniform interval Newton method applied on short line segments. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010